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ABSTRACT
We consider the problem of allocating networked resources in dy-
namic environment, such as cloud computing platforms, where providers
strategically price resources to maximize their utility. Resource allo-
cation in these environments, where both providers and consumers are
selfish agents, presents numerous challenges since the number of con-
sumers and their resource demand is highly dynamic. While numer-
ous auction-based approaches have been proposed in the literature,
this paper explores an alternative approach where providers and con-
sumers automatically negotiate resource leasing contracts. Since re-
source demand and supply can be dynamic and uncertain, we propose
a distributed negotiation mechanism where agents negotiate over both
a contract price and a decommitment penalty, which allows agents to
decommit from contracts at a cost. We compare our approach ex-
perimentally, using representative scenarios and workloads, to both
combinatorial auctions and the fixed-price model used by Amazon’s
Elastic Compute Cloud, and show that the negotiation model achieves
a higher social welfare.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms
Algorithms, Economics, Experimentation

Keywords
Cloud computing, automated negotiation, negotiation strategy

1. INTRODUCTION
Cloud computing platforms enable consumers to programmatically

rent multiple types of Internet-accessible computing resources. In
many cases, these platforms use recent advances in virtualization to
make the resources appear to the consumer as raw hardware com-
ponents, such as machines, storage block devices, sensors, or net-
work links. For example, Amazon currently operates both the Elas-
tic Compute Cloud (EC2) and the Elastic Block Store (EBS), where
consumers programmatically rent virtual machines and block devices,
respectively. As another example, GENI [1] is a recent NSF initiative
that uses a similar paradigm but incorporates a wider range of hard-
ware components, including not only machines and block devices, but
also sensors, mobile devices, and the network links connecting them,
from a wider range of providers, including universities and industry
research labs.
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There are many reasons why market-oriented mechanisms are at-
tractive for regulating resource supply and demand for these plat-
forms. Amazon’s goal is to make a profit by renting their resources
to consumers for more than it costs to purchase and operate them.
While GENI is initially operated as a non-profit platform, it allocates
resources from multiple providers that dynamically donate and with-
draw them, which makes centralized allocation difficult as the number
of providers scales. Additionally, market-oriented allocation mecha-
nisms are attractive since they encourage providers to contribute re-
sources to GENI in exchange for (real or virtual) currency that in-
creases their access. Recent work has explored a variety of both sys-
tem [9, 11] and market [6, 12] structures for resource allocation in
market-oriented cloud computing platforms.

In this paper, we focus on a general resource allocation problem
that matches the characteristics of cloud computing platforms and
their consumers. Namely, multiple self-interested agents supply or
consume multiple types of resources, where 1) consumers dynami-
cally enter and leave the market, 2) consumers have some bounded
flexibility over when they require resources, and 3) a single provider
cannot satisfy consumers’ resource requirements. The first two char-
acteristics are evident in current cloud platforms that are available to
the general public, which use them to execute tasks that may or may
not have hard deadlines. The motivation for 3) is natural for an in-
frastructure like GENI that allocates networked resources from multi-
ple providers, and is also becoming more prevalent for profit-making
enterprises like Amazon as competitors, such as RackSpace Cloud,
become more prominent.

Given these characteristics, we consider the design of a market
structure that allocates resources to their most efficient use. A straight-
forward approach would have all consumers submit both their re-
source requirements and bids to a single super agent that runs an auc-
tion, such as the well-known VCG auction [7], to allocate resources.
Since VCG is not necessarily strategy-proof in dynamic settings, this
approach does not necessarily result in the most efficient usage [15].
While efficient online mechanisms have been proposed for dynamic
environments, they only work in constrained settings and often rely
on strong assumptions about agents’ knowledge [15]. Further, finding
an auctioneer that selfish agents will trust and comply with is difficult.
Alternatively, each consumer could run the VCG auction separately,
but a provider may not truthfully report its information due to the ex-
istence of other auctions.

In this paper, we present a negotiation mechanism in which agents
make contracts for resource leases, which bind a set of resources from
a provider to a consumer for a fixed time interval. To accommodate
the highly dynamic nature of cloud computing platforms, we intro-
duce a negotiation mechanism where an agent is able to decommit
from a contract by paying a penalty to the other contract party. Thus,
an agent may find it advantageous to decommit from existing con-
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tracts. Rather than setting decommitment penalties exogenously, we
propose negotiating simultaneously over contract prices and decom-
mitment penalties since it is difficult for system designers to decide
the optimal contract prices and decommitment penalties that maxi-
mize the social welfare in dynamic environments involving multiple
agents. We show that allowing decommitment improves the efficiency
of the resource allocation mechanism.

Negotiation with uncertainty is both the most challenging prob-
lem in the negotiation literature [10], and the most practical prob-
lem for real cloud computing platforms. The literature provides a
limited number of closed form results with narrow uncertainty set-
tings using bilateral bargaining that considers only one type of un-
certainty, such as a negotiation deadline [10] or reserve price [3].
In contrast, we consider negotiation between multiple agents in dy-
namic environments where there are multiple types of uncertainty
that increases the difficulty of computing agents’ rational equilibrium
strategies. As a result, we bound agents’ rationality and design ne-
gotiation strategies for them following the negotiation decision func-
tions paradigm [5, 8]. Our negotiation problem is complex due to
market dynamics, uncertainty, multiple contracting opportunities, re-
source competition, and decommitment. Rather than explicitly model
these inter-dependent factors and determine each agent’s best deci-
sions through an intractable combined optimization, we connect these
inter-dependent factors indirectly and develop a set of heuristics to
approximate agents’ decision-making during negotiation. The distin-
guishing characteristic of our negotiation agents is their flexibility to
adjust their decisions, such as making offers, by reacting to chang-
ing negotiation status, while also considering the time constraints, re-
source competition, and resource cost.

We evaluate our negotiation mechanism on a simulation testbed
against two well-known mechanisms—combinatorial auctions and Ama-
zon’s fixed-price model. Experimental results show that our negotia-
tion mechanism achieves a higher social welfare than either mech-
anism in a wide range of scenarios. Further, we show that setting
penalties through negotiation achieves a higher social welfare than
exogenous mechanisms for setting penalties. Section 2 introduces the
resource allocation problem using GENI as the motivation, while Sec-
tion 3 formalizes the problem. We detail the negotiation strategies of
our providers and consumers in Section 4 and Section 5, respectively.
Finally, Section 6 experimentally evaluates the efficiency of the nego-
tiation model, while Section 7 concludes.

2. RESOURCE ALLOCATION IN GENI
We explore our resource allocation problem in the context of NSF’s

GENI initiative [1], which is building a prototype of a shared experi-
mental infrastructure to investigate next-generation Internet applica-
tions. GENI is similar to other cloud platforms in that it exposes
network-accessible APIs for consumers to lease virtualized hardware
components, although GENI offers a more diverse collection of re-
sources donated by many providers, such as universities and industry
research labs. The intent is for researchers to experiment with new
Internet protocols and applications by reserving collections of geo-
graphically distributed hardware components and the network links
connecting them, e.g., via Internet2 or NLR. A core concept for GENI
and other cloud computing platforms is resource leasing.

Since GENI allocates resources from multiple providers, it uses one
or more Clearinghouses to mediate the allocation. Providers delegate
the right to allocate their resources to these Clearinghouses, which ag-
gregate the resources and allocate them to researchers. As with Ama-
zon’s EC2 and EBS, GENI allocates virtualized hardware components
to leverage statistical multiplexing and allow multiple researchers to
use one hardware component simultaneously.

GENI consumers acquire resources from one or more Clearing-

houses that broker the transactions for multiple providers. The ini-
tial intent is for the GENI Project Office to operate a small number
of Clearinghouses, but, in general, there may be multiple Clearing-
houses operated by governments, companies, or university-led con-
sortiums. While the initial prototype’s scale does not warrant market-
based mechanisms, reaching GENI’s goal for Internet-scale operation—
allocating millions of components—motivates a market-oriented ap-
proach. Further, decentralizing resource allocation among multiple
Clearinghouses gives GENI’s architecture the flexibility to introduce
market-oriented approaches incrementally in only a few Clearinghouses
initially. We chose GENI as our motivation because its decentralized
design is amenable to incrementally introducing market-oriented ap-
proaches and its structure is still open for debate. Further, we believe
GENI’s goal as a platform for experimental research should also in-
clude research on its own resource allocation mechanisms.

3. THE NEGOTIATION MODEL
3.1 The Resource Allocation Problem

We treat each consumer as a buyer and each provider as a seller,
where B denotes the set of buyers and S denotes the set of sellers.
Each buyer b ∈ B has a high level task τ , such as an experiment. The
task τ of buyer b has the following attributes:

• A resource set Rb and the quantity of units τ requires. For a
resource r ∈ Rb, τ requires q(Rb, r) units of resource r.

• Task generation time tg(b) when the task is generated.
• Earliest start time est(b) where task τ cannot start before time

est(b). Generally est(b) > tg(b) and b can use the time
between est(b) and tg(b) to acquire resources.

• The period pd(b) of resource usage, such that b must use re-
sources R(b) for a period of length pd(b).

• Deadline dl(b) that indicates the latest start time of the task
of a buyer b. Since dl(b) ≥ est(b). If dl(b) > est(b),
the buyer has the flexibility to determine the start time of the
experiment. Note that the task must finish before dl(b)+pd(b),
and a rational buyer will not negotiate after dl(b).

• Value vb(t) represents the value b attaches to task completion
as a function of completion time t. Following [13], b has its
maximum value at time est(b)+pd(b) and its minimum value
at time dl(b) + pd(b).

Each seller s ∈ S has different types of resources Rs in varying
quantities, q(Rs, r) units of resource r ∈ Rs, and suffers a cost cs(r)
for providing each unit of resource r ∈ Rs for a unit time period. This
model follows GENI in that sellers have different types of resources,
although we simplify our problem by allowing only one “plan” for
each task. While we specify only a single set of resources to satisfy
each task, in general, multiple different types of resources may be
able to satisfy a task. For example, a researcher may either plan an
experiment with a small number of resources for a long duration, or a
large number of resources and a short duration. In these cases, we can
extend our formulation to include multiple plans.

We assume each buyer is able to discover the set of resources each
seller provides. This assumption is reasonable since each seller is
willing to let others to know its capability, and, from a single agent’s
perspective, knowing other agents’ information may help it to develop
appropriate strategies. For example, if a buyer knows that the resource
competition is low, it may offer a lower price. We assume that 1) each
buyer knows each seller’s expected cost cb(r) of providing a resource
r ; and 2) each agent has knowledge about the demand/supply ratio
ψ(r) of resource r over time. This assumption is not more restrictive
than related work [5, 14]. Further, in dynamic markets, a buyer can
estimate a seller’s cost and market competition by analyzing its ne-
gotiation history. We explore the sensitivity of this assumption in our
experiments.
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Figure 1: Finite state machine for the negotiation protocol

3.2 Negotiation Protocol
This work extends the alternating offers protocol [16], which has

been widely used for bilateral bargaining. Before we formally define
the protocol, we first define agents’ possible actions:

• offer [o], where o is buyer b’s offer to a seller s. An offer o is of
the form 〈pr, pe,R, est, pd, dl〉 where pr is the offering price,
pe is the decommitment penalty, R specifies the set of required
resources and their quantities, est is the earliest start time of
providing resources, pd is the duration, and dl is the latest time
for providing resources. Note that when dl > est, the buyer
provides a flexible schedule and the receiving seller is able to
decide the exact start time of providing resources.

• accept [o]. When a seller s receives an offer o′, s is able to
accept the offer resulting in the two agents reaching a tentative
agreement. If dl(o′) > est(o′), s must decide the exact start
time of providing R(o′) and dl(o) should be equal to est(o).

• bid [Q]. When a seller s receives an offer o′ and the offer is
not acceptable, s can send quotes Q for its available resources.
Each quote Q ∈ Q describes the quantity of resource r ∈
R(o′) and its asking price.

• confirm[o]. When a seller s accepts an offer o, two agents
reach a tentative agreement and the buyer can confirm the tenta-
tive agreement. If b confirms the tentative agreement, then the
agreement becomes a final agreement.

• cancel [o]. After two agents make a tentative agreement, any
agent can cancel the agreement without paying a penalty. Then,
negotiation between the two agents fails with no agreement.

• decommit [o]. After a final agreement is made, an agent has
the opportunity to decommit from the agreement and the de-
commiting agent pays the penalty to the other party. Note that
after time est(o), no agent can decommit from the agreement.
Furthermore, the decommiting agent pays the penalty after de-
commitment happens.

Figure 1 shows the finite state machine for the negotiation between
b and s. The initial state is “buyer reasoning” in which b decides how
to make the offer. After b sends an offer to s, the state is “seller rea-
soning” in which s is deciding whether to accept the offer or make a
bid. If s accepts the offer, a tentative agreement is made. Otherwise, s
sends a bid to b and then it is b’s turn to decide its offer. If b confirms
a tentative agreement, the negotiation is in the “final agreement” state.
If one agent cancels a tentative agreement or decommits from a final
agreement, their negotiation fails and b can restart to make an offer.

An important feature of our negotiation model is that many buyer-
seller pairs can negotiate simultaneously. In addition to the decom-
miting action, we also introduce another pair of actions “confirm’’
and “cancel’’. With the two actions, if a seller accepts an offer, a
buyer can still have the chance to “decommit” from the agreement
without paying a penalty. Assume that b only needs one resource. In
absence of the action cancel, if b makes offers to multiple sellers that
all accept, b must buy multiple items or decommit from agreements
by paying penalties. Accordingly, b may only propose to one seller.

In presence of actions cancel and confirm , b can choose only one
contract while negotiating with multiple sellers simultaneously.

Next we formalize the notion of utility. The utility of buyer b de-
pends on its task completion time and its payment, including 1) its
payment for getting resources, and 2) penalties it pays to other agents
and receives from other agents. b’s utility at time t is

ub(t) =

{
vb(t) + ρb if b’s task is finished
ρb otherwise

where ρb is the balance of the buyer b—the difference between the
payment received and the payment paid to other agents.

The total utility of each seller s ∈ S from time 0 to time t is us(t) =
ρs − cs where ρs is the balance of the seller s at time t and cs is seller
s’s cost for providing resources from the beginning to time t.

4. BUYERS’ NEGOTIATION STRATEGY
Before formally defining a buyer b’s negotiation strategy, we first

discuss other important factors we consider:

• Deadline Pressure. b must satisfy its resource requirements by
the deadline dl(b), which is a hard constraint.

• Sellers’ Cost. A rational seller will not accept a price lower
than its cost. A buyer needs to offer different prices for different
resources which have different costs.

• Single Provider. If Rb ⊆ Rs, b can make a full agreement
with a single seller s which can satisfy b’s resource require-
ments. Otherwise, it must request resources from different sell-
ers and make a set of partial agreements, each of which can
only satisfy part of b’s resource requirements. The negotiation
for the latter case is more complex since b must have contracts
with multiple sellers, and making no agreement may be better
than making agreements which cannot satisfy b’s requirements.
Furthermore, if b’s resource requirements are satisfied through
a set of contracts, the set of contracts should be compatible in
that all contracts should provide resources during the same time
frame.

In summary, a buyer agent’s optimal action at each time point is af-
fected by many factors and it is impossible to construct an integrated
framework in which all these factors are optimized concurrently. In-
stead, this work connects those inter-dependent factors indirectly and
develops a set of heuristics to approximate agents’ decision making.
In what follows we first introduce buyer b’s strategy (Algorithm 1)
informally and then present it formally.

One distinguishing feature of b’s negotiation strategy is that it al-
ways tries to make two sets of agreements both of which can satisfy
its resource requirements. Therefore, if a set of agreements is decom-
mited, b can use the other agreement set to satisfy its resource re-
quirements. If both set of agreements are not decommited, when one
set of agreements starts execution, b can decommit from the other
set of agreements. If the start time of two sets of agreements are the
same, b will choose one set of agreements to decommit before the
execution starts. Specifically, b is always trying to make a final full
agreement and a set of partial final agreements both of which can sat-
isfy its resource requirements. In case no single seller can satisfy b’s
resource requirements, b makes two sets of partial final agreements.
In addition, b sets a small penalty for each partial agreement and thus
it only needs to pay a small penalty for decommiting from any partial
agreement. While a buyer can make more agreements to increase the
probability that its task can be finished, it has to pay more for those
agreements since for each unnecessary agreement, it has to pay ei-
ther the penalty or the agreement price. Alternatively, if a buyer only
makes one set of agreements, it may be difficult to find another set of
agreements to satisfy the buyer’s resource requirements when some
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Algorithm 1: Negotiation strategy of buyer b
Set Ab = ∅ , T Ab = ∅, t is the real time (initially, t = tg(b)).
Let estp = est(b), dlp = dl(b) be the earliest start time and deadline for
negotiating partial contracts.
Let κ (e.g., 4) be the total number of times to try different execution schedules of
partial agreements. Let Tbk = (dl(b) − tg(b))/κ + tg(b).
while t < dl(b) and the task has not started to run do /* main loop */

foreach s ∈ S such that Rs ∩ Rb �= ∅ and b is not negotiating with s do
send offer GENERATE_OFFER(Ab, T Ab, s) to seller s;

end
if seller s sends a bid Q then

update the bid set;
end
if seller s accepts offer o then

EVALUATE_ACCEPT(Ab, T Ab, o, s);
end
if t > estp then

decommit (cancel) agreements Ab − Af
b (T Ab − T Af

b);
set estp = max{t, est(b)}, dlp = dl(b);

end
if t ≥ Tbk then

κ − −, Tbk = (dl(b) − t)/κ + t;
if R(Ab + T Ab − Af

b − T Af
b) ⊂ Rb then

decommit (cancel) agreements Ab − Af
b (T Ab − T Af

b);
set estp = max{t, est(b)}, dlp = dl(b);

end
end
if seller s decommits from agreement o then

remove o from Ab;
end
if seller s cancel tentative agreement o then

remove o from T Ab;
end
if seller s has not responded to b’s proposing o for a period ε then

send offer GENERATE_OFFER(Ab, T Ab, s) to seller s;
end
if seller s has not responded to b’s accepting offer o for a period ε then

cancel the tentative agreement o and remove o from T Ab;
end

end
cancel from all tentative agreements T Ab ;
if the task has started to run then

decommit from each agreement o ∈ Ab if o is useless and pr(o) > pe(o);
else

decommit from each agreement o ∈ Ab if pr(o) > pe(o);
end

agreements are decommited. Experimental results show that making
two sets of agreements is better than making only one set of agree-
ments and making more than two sets of agreements.

Another distinguishing feature of b’s negotiation strategy is that
while deciding the offering price pr(R, est, dl, t) of requesting re-
sources R at time t with earliest start time est and latest start time dl,
the following factors are considered. First, the pressure of deadline.
The buyer makes more concessions when the deadline approaches.
Such time-dependent concession strategies have been widely used in
the literature [5,8]. Second, the cost cb(r) of resource r. Intuitively, a
buyer needs to pay more for a resource with a higher cost. Third, the
demand/supply ratio ψ(r) of a resource r. The higher the ratio, the
higher the price for the resource. Market (resource) competition has
the largest effect on the equilibrium price [4]. Formally, the offering
price pr(Rb, est, dl, t) for all resources Rb is defined as

c(Rb) +
(
RP (est, dl)− c(Rb)

)
(

t− tg(b)

dl(b)− tg(b)
)ε (1)

where c(Rb) =
∑

r∈Rb
cb(r)q(Rb, r)pd(b) is the expected cost of

resources Rb and RP (est, dl) is the expected value of finishing the
task with earliest start time est and latest start time dl. Formally,

RP (est, dl) =

{ ∫ dl
est vb(pd(b)+t′)dt′

dl−est
if dl �= est

vb(pd(b) + est) otherwise

Algorithm 2: GENERATE_OFFER(Ab, T Ab, s)

if |Af
b ∪ T Af

b| = 0 and Rb ⊆ Rs then
Let price be pr = pr(Rb,max{t, est(b)}, dl(b), t) using Eq. (1);
Let the penalty be pe = vb(max{t, est(b)} + pd(b)) − pr;
return offer o = 〈pr, pe,Rb,max{t, est(b)}, pd(b), dl(b)〉;

else
Let R = Rs ∩ (Rb − R(Ab + T Ab − Af

b − T Af
b));

if R = ∅ then
return offer o = null;

end
if estp �= dlp then

If possible, set the value of estp = dlp > t + σ based on bids from
sellers such that the available resource from estp to estp + pd(b) can
satisfy b’s resource requirements;

end
Let price be pr = pr(R, estp, dlp, t) using Eq. (2);
Let the penalty be pe = α · pr (e.g., α = 0.05);
return offer o = 〈pr, pe,R, estp, pd(b), dlp〉;

end

Algorithm 3: EVALUATE_ACCEPT(Ab, T Ab, o, s)

Let new offer o′ = GENERATE_OFFER(Ab, T Ab, s);
if 1) R(o) = R(o′) = Rb, |Af

b ∪ T Af
b| = 0, and pr(o) ≤ pr(o′) or 2)

R(o) = R(o′), est(o) = est(o′) = estp = dlp, and pr(o) ≤ pr(o′) then
confirm agreement o and add it to Ab;

else
cancel agreement o;

end

When t = tg(b), pr(Rb, est, dl, t) = c(Rb), which is the lowest
offer acceptable to sellers. When t = dl(b), pr(Rb, est, dl, t) =
RP (est, dl), which is the highest offering price of b since the buyer
will get negative utility if it pays more than its value of finishing the
task. Parameter ε > 0 is used to model how the buyer b increases
its offering price with the increase of time t. With infinitely many
values of ε, there are infinitely many possible strategies in making
concessions with respect to the remaining time. However, they can be
classified into: 1) Linear: ε = 1, 2) Conciliatory: 0 < ε < 1, and 3)
Conservative: ε > 1 [8]. We adopt the linear strategy for b.

By considering both resources’ costs and market competition, the
buyer’s offering price for R ⊂ Rb is calculated in the following way:

pr(R, est, dl, t) =
∑
r∈R

q(R, r)pd(b)pr(r, est, dl, t) (2)

pr(r, est, dl, t) = cb(r) +

(
pr(Rb, est, dl, t)− c(Rb)

)
ψ(r)cb(r)

pd(b)
∑

r∈Rb
ψ(r)cb(r)q(Rb, r)

pr(r, est, dl, t) is the price for one unit of resource r and it in-
creases with its cost cb(r) and the demand/supply ratio ψ(r).

Let Ab be b’s final agreements and T Ab be b’s tentative agree-
ment set. Let Af

b ⊆ Ab (T Af
b ⊆ T Ab, respectively) be the set of

final full (tentative, respectively) agreements. Let R(A) be the set of
resources provided by the agreement set A. If b has no full agree-
ment, i.e., |Af

b ∪T Af
b| = 0, it will request for all resources Rb from

sellers which can satisfy its full resource requirements and request for
resources Rs∩(Rb−R(Ab+T Ab−Af

b−T Af
b)) from each seller

s which can only satisfy part of its resource requirements. If b has a
full agreement, it will request for resources Rs ∩ (Rb − R(Ab +

T Ab −Af
b − T Af

b)) from each seller s ∈ S .
When buyer b wants to acquire resources R from seller s at time t,

in addition to specifying the offering price, it also decides the decom-
mitment penalty pe, and the task execution period. First consider the
case in which |Af

b ∪ T Af
b| = 0 and R = Rb. In this case, b simply

requests its earliest execution start time est(b), deadline dl(b), and
the execution period dl(b). The seller will decide the exact start time.
We use a simple rule to decide the decommitment penalty: the lower
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Algorithm 4: Negotiation strategy of seller s
Set As = ∅, T As = ∅;
if buyer b decommits from agreement o then

remove o from Ab;
end
if buyer b cancels tentative agreement o then

remove o from T Ab;
end
if buyer b confirms tentative agreement o then

remove o from T Ab and add o to Ab;
end
if buyer b sends an offer o then

run the greedy algorithm for OPTs(RAs,As, T As,Os);
end
if buyer b has not responded to s’s proposing o for a period ε then

send offer to buyer s with a price cs(r)ϕ(r, t) for each resource r;
end
if buyer b has not responded to s’s accepting offer o for a period ε then

cancel the tentative agreement o and remove o from T As;
end

the price pr(Rb, est, dl, t), the higher the penalty. In other words, b
does not want a cheap full agreement to be decommited. One example
rule to set the penalty is pe = vb(max{t, est(b)}+ pd(b))− pr.

We also consider the case |Af
b ∪ T Af

b| > 0 or R �= Rb. In
this case, b must decide what time period to request resources since
different sellers need to provide resources in the same time period
and this decision making is difficult due to uncertainty and agents’
selfishness. In this work, b decides the task execution schedule for
partial agreements based on its information about sellers’ available
resources, which can be obtained from the bid messages and accep-
tance messages from sellers. Note that there is no guarantee that b can
get part or all of s’s available resources due to the market dynamics.
Specifically, b searches from time max{t + σ, est(b)} until dl(b)
and sets the task start time est as the earliest time point from which
sellers’ available resources from time est to est + pd(b) can satisfy
the buyer’s resource requirements. We use the parameter σ > 0 to
allow the buyer the flexibility to negotiate for resources. We choose
this simple rule for two reasons. First, since a buyer’s value of finish-
ing a task generally decreases with the task start time, the buyer can
potentially achieve a higher utility if it negotiates for a set of agree-
ments with an early task start time. Second, due to market dynamics
and agents’ strategic interaction, it is impossible to determine the best
start time. If there is no start time for which the buyer’s resource
requirements can be satisfied, the buyer simply sets est = est(b)
and dl = dl(b) and it will not confirm any partial agreement. Us-
ing our simple rule, we set the decommitment penalty in this case to
pe = α · pr, where 0 < α < 0.2.

Once the task execution schedule of partial agreements is deter-
mined, buyer b will request resources from sellers according to the
task execution schedule. However, the selected task execution sched-
ule may cause buyer b to fail to find agreements to satisfy its resource
requirements. Therefore, it is important for buyer b to try other task
execution schedules if it fails to get agreements with the current sched-
ule. In other words, buyer b should have the “backtracking” ability
of changing its task execution schedule. In this work, a buyer agent
will change its task execution schedule if it fails to satisfy its resource
requirements for a given time. When a buyer b changes its task execu-
tion schedule, it will first decommit from its other partial agreements.

5. SELLERS’ NEGOTIATION STRATEGY
Our negotiation strategy for the seller (Algorithm 4) has two fea-

tures. First, the seller adopts a “myopic” negotiation strategy in the
sense that it accepts an offer if and only if it can gain some immedi-
ate payoff by accepting the offer, and will not consider the effect of

its current action on the future utilities. In addition, when a seller re-
ceives an offer, it will first make acceptance and decommitment deci-
sions, and then generate bids to the buyer if the offer is not acceptable.
Second, the seller decides the acceptable price for a set of resources
based on resource competition and cost of resources.

If the competition of a resource is high, a seller has an expectation
that it will receive a high price for the resource. When a seller receives
an offer o, it first generates a threshold price φ(o). If pr(o) < φ(o),
it will not accept the offer. The threshold price φ(o) is defined as

φ(o) =
∑

r∈R(o) q(R(o), r)cs(r)(1 + ψ(r))pd(o)

in which cs(r)(1+ψ(r))pd(o) is seller s’s “asking” price for one unit
of resource r. Obviously, φ(o) > cost(o) =

∑
r∈R(o) q(R(o), r)

cs(r)pd(o). If an offer is not acceptable, the seller will simply report
its available resources in the buyer’s request, as well as the unit price
of each resource r as cs(r)(1 + ψ(r)).

Since an agent can decommit from a final agreement, a seller can
make more agreements than its capacity. In this case, a seller can de-
commit from an unsatisfiable agreement before the resource provid-
ing time. However, since an agent does not know whether the other
agent will decommit from an agreement and the seller may pay a high
penalty, we have chosen a seller’s strategy where the seller may not
make agreements beyond its capability. That is, without decommiting
from any final agreement or canceling any tentative agreement, the
seller must be able to fulfill its current running agreements RAs, final
agreements As, and tentative agreements T As. This strategy also im-
plies that when a seller receives a message indicating confirmation of
an agreement, it can fulfill the agreement without decommiting from
any final agreement or cancel any tentative agreement.

The most difficult decision problem for the seller is how to handle
a set of acceptable offers, which can be formulated as an optimization
problem OPTs(RAs,As, T As,Os): Given the running agreements
RAs, final agreements As, tentative agreements T As, and offers Os,
compute the set KAs of final agreements not to decommit, the set
KT As of tentative agreements to not to cancel, and the set AOs of
offers to accept to maximize the following objective function∑

o∈KAs∪KT As∪AOs

pr(o)− cost(o)−
∑

o∈As−KAs

pe(o)

with the constraint that s can fulfill final agreements KAs and tentative
agreements T As ∪ AOs.

THEOREM 1. The optimization problem OPTs(RAs,As, T As,Os)
is NP-complete.

The theorem’s proof is a straightforward reduction from the 0-1
Knapsack problem. Thus, we propose a greedy algorithm to handle
this computationally costly optimization problem. First, an agreement
is treated as an offer and let Ω = As ∪ T As ∪Os be the set of offers
that must be considered. s’s revenue of accepting offer o ∈ Ω is

rv(o) =

{
pr(o)− cost(o) + pe(o) if o ∈ As

pr(o)− cost(o) otherwise

Next, all the offers Ω are sorted by decreasing revenue and offers
are greedily picked in this order, starting with the first offer, and until
no offers remain. Let Ω′ = ∅ be the set of accepted offers. When an
offer o is picked, add o to Ω′ and check whether the seller is able to
fulfill all agreements Ω′. Note that if o ∈ Os and dl(o) > est(o), the
seller must decide the schedule (the start time of providing resources
and end time of providing resources) for providing resources specified
in the offer. If the seller can fulfill all the agreements in Ω′ and o is an
offer from a buyer, the seller will send an acceptance message to the
buyer. If the seller cannot fulfill all the agreements in Ω′, remove o
from Ω′. If o ∈ As, then send a decommitment message to the buyer
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Table 1: Variables
Variables Values

Number of sellers [5, 20]

No. of resource types per seller [2, 8]

Quantity of a resource per seller [2, 20]

Unit cost of a resource [10, 100]

No. of resource types per buyer [2, 6]

Quantity of a resource per buyer [2, 8]

Value/cost ratio [1.2, 5]

pd(b) [10, 50]
dl(b)−pd(b)−est(b)+1

pd(b)
(task execution flexibility) [0, 7]

est(b)−tg(b)+1
pd(b)

(negotiation time ratio) [1, 8]

resource demand/supply ratio ψ(r) [0.2, 10]

involved in the agreement and pay the penalty. If o ∈ T As, send a
cancel message to the buyer involved in the agreement.

6. EMPIRICAL EVALUATION
To evaluate the performance of our mechanism, we implement a

simulation testbed consisting of a discrete time virtual marketplace
and a set of trading agents. We generate all seller agents before the
market opens and buyers dynamically enter the market, which matches
real-world environments with a fixed number of well-known sellers.

6.1 Different Mechanisms
Negotiation mechanism (NG): When a buyer enters the market, it

negotiates with sellers following the protocol described in Section 3.2.
At each time point, first all buyers are triggered and then all sellers
are triggered. All agents employ the negotiation strategies described
in Sections 4 and 5. A buyer quits the market when its task is finished
or it fails to satisfy its resource requirements by its deadline. For com-
parison, we also implemented two other widely used mechanisms:

• Combinatorial reverse auction (CRA): In combinatorial auc-
tions [7], a large number of items are auctioned concurrently.
In combinatorial reverse auctions, a buyer buys goods from
many competing sellers. When a buyer enters the market, it
announces its resource requirements, and sellers submit bids in-
dicating the set of resources and their prices. Finally, the buyer
determines the set of contracts. The buyer uses the well-known
strategy-proof Vickrey auction mechanism. We assume that
each seller has no knowledge of other buyers and, thus, each
seller truthfully reports its available resources and their costs.

• Fixed price scheme (Amazon) [2]: Amazon EC2 is a web ser-
vice that provides resizable compute capacity. The primary
pricing mechanism for Amazon is a fixed price scheme with
hourly charges per virtual machine. While using the Ama-
zon scheme, a seller sets its price for each resource in advance
and sellers constantly update their available resources. When a
buyer enters the market, it decides the set of resources to buy.
In our experiments, we tried different methods for setting price
of each resource, where the price/cost ratio is 1, 2, 3, or 5.

The Amazon scheme is similar to CRA, except that in the Amazon
scheme, a seller’s payment from buyers is decided by the seller. In
contrast, a seller’s payment in CRA is the opportunity cost that its pres-
ence introduces to all the other agents. Note that when the price/cost
in the Amazon scheme is 1, the Amazon scheme is equivalent to CRA
in terms of the allocation since each seller will only charge its cost.
Our negotiation model is also similar to CRA since sellers’ accepting
offers in the negotiation model are equivalent to submitting bids in the
auction model. There are two main differences between our negotia-
tion model and the other two models. First, in the negotiation model,
agents are allowed to decommit from agreements. Second, there is a
dynamic bargaining process in the negotiation model.
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Figure 2: Social welfare and resource competition
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Figure 3: Success rate and resource competition

6.2 Experimental Settings and Measures
We performed a series of experiments in a variety of test environ-

ments using the parameters from Table 1. The parameters are inspired
by the current design of the GENI infrastructure [1]. In the experi-
ments, the number of sellers are in the range of [5, 20], where each
seller can provide 4 to 8 different types of resources. The quantity
of a resource a seller can provide is in the range of [2, 20]. The cost
of a resource per unit time is in the range of [10, 100]. Each buyer
needs 2 to 6 different types of resources, and for each type of re-
source, a buyer needs 2 to 6 units. The length of resource usage is
in the range of [10, 50]. The ratio dl(b)−pd(b)−est(b)+1

pd(b)
∈ [0, 7] de-

scribes a buyer’s flexibility of deciding when to start its task. Sim-
ilarly, ratio est(b)−tg(b)+1

pd(b)
∈ [1, 8] represents a buyer’s time to ne-

gotiate for resources. We assume that each buyer has a linear value
function in which the buyer gets the highest value when the task starts
from est(b) and the buyer gets the lowest value when the task starts at
dl(b). Value/cost ratio is used to generate a buyer’s maximum value
and minimum value based on sellers’ cost of providing resources.
ψ(r) ∈ [0.2, 10] is the ratio of total resource requirements to total
resource supply through the whole experiment horizon.

The main performance measure is the social welfare—the sum of
all agents’ utilities. Since the social welfare of a mechanism in differ-
ent settings could be significantly different, we report the ratio of the
social welfare of CRA and the Amazon mechanism to the social wel-
fare of NG. We also report the success rate of different mechanisms—
the percentage of buyers which successfully complete their tasks.

6.3 Results
Extensive stochastic simulations were carried out for all the combi-

nations of variables in Table. 1. For each combination, we randomly
generated over 5000 experiments and for each experiment, and tried
all the three mechanisms and generated average performance mea-
sures. Even though extensive stochastic simulations were carried out
for all the situations, due to space limitations, we only present the rep-
resentative results. The length of each experiment is 1000 time units.
We found that the confidence interval for each average value is very
tight around the value, so the confidence intervals are not reported.

6.3.1 Performance of the negotiation mechanism
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Figure 4: Social welfare and number of resource to acquire
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Figure 5: Success rate and number of resource to acquire

Observation 1: NG achieved about 13% higher social welfare than
any other evaluated mechanism. Figure 2 shows how the social wel-
fare of different mechanisms changes with resource demand/supply
ratio ψ(r). We can observe that in all situations, NG’s social welfare
is always higher than any other mechanism. Furthermore, when ψ(r)
is small (e.g., 0.2), CRA or the Amazon scheme with lower prices
(e.g., Amazon-1.5) achieved higher social welfare than with higher
prices (e.g., Amazon-8). In contrast, when ψ(r) is large (e.g., 6), the
Amazon scheme with higher prices (e.g., Amazon-8) achieved higher
social welfare than CRA or Amazon scheme with lower prices. This
observation is intuitive: When the resource competition is low, there
are plenty of resources and each buyer can find them. However, when
the resource competition is high, a mechanism can achieve a high so-
cial welfare if tasks with high revenues can be completed. If the price
of each resource is low, a task with low revenue may get resources and
a task with high revenue may fail to get resources since the resource
were prematurely committed to the low revenue buyer and there was
no way to decommit from the decision. In contrast, if a high price is
set for each resource, only tasks with high revenues can get resources.

Figure 3 shows how the success rates of different mechanisms change
with resource demand/supply ratio. First, a mechanism with a higher
price has a lower success rate than that of a mechanism with a lower
price. NG’s success rate is lower than some mechanisms with lower
prices due to fact that in negotiation, each agent will not accept or of-
fer any offer worse than its expectation. Second, with the increase of
resource competition, the success rate of each mechanism decreases,
which corresponds to the intuition that with higher resource competi-
tion, it is more difficult to acquire resources.

Observation 2: Figure 4 shows how the social welfare changes
with the average number of resources acquired by buyers, which is∑

r∈Rb
q(Rb, r). We can observe that the advantage of NG over

other mechanisms increases with the number of resources to acquire.
Fig. 5 shows that the success rate decreases with the number of re-
sources to acquire, which is intuitive since it is difficult to acquire
more resources which have to be provided during the same period.

Observation 3: In some cases, the difference between a deadline
and the earliest start time is large and each buyer has more flexility of
deciding when to start its task. A buyer b can use the time between
est(b) and dl(b) to negotiate for resources. As shown in Figure 7, the
success rate of NG increases when buyers have more flexibility to de-
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Figure 6: Social welfare and the flexibility of starting a task
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Figure 7: Success rate and the flexibility of starting a task

cide when to start task execution. However, an agreement’s probabil-
ity of being decommited increases with more flexibility. Accordingly,
a buyer may fail to get resources due to the decommitment. Figure 6
shows that, with the increase of the flexibility, the advantage of NG
over the other mechanisms increases at the beginning and slightly de-
creases when buyers have a lot of flexibility to decide when to start
task execution, which is mainly due to sellers’ decommitment.

Observation 4: A buyer b can start negotiation at time tg(b) and
its task cannot start before est(b). Figure 9 shows that NG’s success
rate increases with (est(b) − tg(b))/pd(b) since a buyer has more
time to negotiate for resources. However, as shown in Figure 8, the
advantage of NG does not strictly increase with negotiation time: its
advantage decreases when buyers have a long negotiation time. The
reason is that a buyer’s agreements made at an early stage may be
decommited by sellers when there is a long negotiation deadline.

Observation 5: In addition to a fully distributed auction (CRA), we
also designed a super buyer which receives requests from buyers and
buys resources for buyers. The super buyer runs the auction when it
has received a certain number of requests or one requesting buyer’s
deadline is approaching, whichever occurs first. Experimental results
show that NG still beat the centralized CRA by 11%. The centralized
CRA beat the distributed CRA by no more than 2%.

6.3.2 Evaluating agents’ negotiation strategies
Observation 6: Since it is impossible to find out agents’ equilib-

rium strategies in the complex bargaining game, we designed strate-
gies for agents by taking into account some important factors which
are considered in the literature. While negotiation agents with the
strategies achieved higher social welfare than other mechanisms, one
may ask whether agents have an incentive to switch to other strategies.
To answer this question, we tried some other strategies as follows: 1)
each buyer makes only one set of agreements, 2) each buyer makes
three sets of agreements, 3) when an agent decide to decommit from
an agreement o, it decommits before est(o) rather than decommits
immediately, 4) and a seller makes contracts beyond its capability.

We found that making these changes did not improve either utilities
of agents with new strategies or NG’s performance. Always making
two sets of contracts is a good choice due to the tradeoff between fail-
ing to finish the task and paying too much. While delaying decommit-
ment does not “hurt” an agent directly, it hurts the agent “indirectly”
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Figure 8: Social welfare and negotiation time
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Figure 9: Success rate and negotiation time
since resource competition will increase if each agent holds more con-
tracts. Further, it is better for a seller not to make contracts beyond its
capability: if the resource competition is low, generally a seller cannot
make contracts beyond its capability, and if the resource competition
is high, a buyer is less likely to decommit from a contract and a seller
may have to pay more penalties for contracts beyond its capability.

6.3.3 Sensitivity analysis
We also did additional experiments to explore the sensitivity of our

experimental results to changes to the parameters of our experimental
environments or assumptions about our negotiation model.

Observation 7: This paper assumes that each agent knows the de-
mand/supply ratio of each resource. In reality, an agent may not know
the demand/supply ratio. We tested the negotiation model without this
assumption and alternatively, each agent predicts the demand/supply
ratio through its interaction with buyers. Specifically, a seller can esti-
mate the competition of a resource according to 1) the requests for the
resource from all the buyers in the last λ time points and 2) the total
number of resources provided by other sellers. A buyer can estimate
the competition of a resource according to bids from sellers. In this
case, we found that the social welfare of NG is still 10% higher than
other mechanisms.

Observation 8: This paper also assumes that each agent knows
each seller’s cost of a resource. We found that that the accuracy of
this information does have a slight effect on agents’ negotiation per-
formance. When the believed cost is less than half of the actual cost,
the average social welfare of NG is 6% lower than that of NG in which
each buyer knows the actual cost.

Observation 9: We also compared setting penalties through ne-
gotiation with exogenous mechanisms for setting penalties [5, 14],
e.g., fixed penalties (e.g., {0, 10, 20, 40}) or penalty as a percentage
(e.g., {0.1, 0.3, 0.5}) of a contract price. We found that setting penal-
ties through negotiation achieved higher social welfare than other ex-
ogenous mechanisms for setting penalties.

7. CONCLUSION
This paper presents the design and implementation of a negotiation

mechanism for dynamic resource allocation problem. In the negotia-
tion model, multiple buyers and sellers are allowed to negotiate with
each other concurrently and an agent is allowed to decommimt from

an agreement at the cost of paying a penalty. This paper also presents
negotiation strategies for both buyers and sellers considering impor-
tant factors widely studied in the literature. An extensive set of exper-
iments were carried out and it is shown that the proposed negotiation
model outperforms combinatorial auction mechanisms and Amazon’s
fixed price model. In general, the proposed mechanism can be applied
in wide range of dynamic resource allocation problems.

Finally, we outline a future agenda for this work. First, in the cur-
rent design, an agent will make its decision immediately after it re-
ceives a message. As future work, we will consider the role of delay-
ing making decisions. Second, while it is impossible to derive agents’
equilibrium strategies in such dynamic resource allocation game, it
would be interesting to investigate agents’ rational strategies in some
simplified scenarios [4]. Third, we will implement and evaluate the
negotiation mechanism using the current GENI prototype [1].
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